Damage in porous media due to salt crystallization.
نویسندگان
چکیده
We investigate the origins of salt damage in sandstones for the two most common salts: sodium chloride and sulfate. The results show that the observed difference in damage between the two salts is directly related to the kinetics of crystallization and the interfacial properties of the salt solutions and crystals with respect to the stone. We show that, for sodium sulfate, the existence of hydrated and anhydrous crystals and specifically their dissolution and crystallization kinetics are responsible for the damage. Using magnetic resonance imaging and optical microscopy we show that when water imbibes sodium sulfate contaminated sandstones, followed by drying at room temperature, large damage occurs in regions where pores are fully filled with salts. After partial dissolution, anhydrous sodium sulfate salt present in these regions gives rise to a very rapid growth of the hydrated phase of sulfate in the form of clusters that form on or close to the remaining anhydrous microcrystals. The rapid growth of these clusters generates stresses in excess of the tensile strength of the stone leading to the damage. Sodium chloride only forms anhydrous crystals that consequently do not cause damage in the experiments.
منابع مشابه
Experimental evidence of crystallization pressure inside porous media.
Crystallization pressure of salt in porous materials is one of the mechanisms that may induce serious damage, for example, weathering of buildings and monuments of cultural heritage. Since this pressure also causes the solubility of the salt inside a porous material to differ from the bulk solubility, it can be assessed experimentally by measuring the solubility inside the pores. We show that t...
متن کاملNumerical Simulation and Estimation of the Transvers Macrodispersivity Coefficient of Aqueous Phase (Miscible) Contaminants of Salt Water in a Heterogeneous and Homogeneous Porous Media
Deterioration of groundwater resources in coastal regions due to the progression of saline water in aquifers in these regions is currently one of the important issues in providing water needs in these areas. In coastal regions, saline water enters the aquifer from below in shape of wedge. Due to the difference in the density between fresh and salty water, an interface zone forms between two flu...
متن کاملEstimating the Mechanical Properties of Travertine Building Stones Due to Salt Crystallization Using Multivariate Regression Analysis
Salt crystallization is one of the most powerful weathering agents that may cause a rapid change in the mechanical properties of stones, and thus limit their durability. Consequently, determining the mechanical properties of stones due to salt crystallization is important for natural building stones used in marine environmental and mild climatic conditions, which expose excessive salt crys...
متن کاملSodium sulfate heptahydrate: direct observation of crystallization in a porous material
It is well known that sodium sulfate causes salt crystallization damage in building materials and rocks. However since the early 1900s the existence of the metastable heptahydrate has been largely forgotten and almost entirely overlooked in scientific publications on salt damage mechanics and on terrestrial and planetary geochemistry. We use hard synchrotron x-rays to detect the formation of th...
متن کاملAn Experimental Study on Permeability Reduction Resulting from Mixed BaSO4, CaSO4, and SrSO4 Scale Deposition in Porous Media during Water Injection
Sulfate scale deposition (BaSO4, CaSO4, and SrSO4) is a common problem in oilfield operations around the world, which causes significant formation damage during production and injection activities. This paper presents the results of an experimental study on the permeability reduction of porous media due to sulfate scale deposition. A set of experiments were cond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 81 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2010